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This paper builds a general theory of delegation from an algorithmic perspective. In the delegation problem,

an uninformed principal must consult an informed agent to make a decision. Both the agent and principal

have preferences over the decided-upon action which vary based on the state of the world, and which may not

be aligned. The principal may commit to a mechanism, which maps reports of the agent to actions. When this

mechanism is deterministic, it can take the form of a menu of actions, from which the agent simply chooses

upon observing the state. In this case, the principal is said to have delegated the choice of action to the agent.

We analyze the principal’s choice of menu as an algorithmic problem. Rather than study highly parametrized

models, as is common in the delegation literature, we study a fully general discrete model of delegation, and

show that under minimally restrictive assumptions, simple mechanisms are approximately optimal, while the

exact optimal mechanism may be computationally hard to obtain (and therefore necessarily complicated).

We derive measures of alignment and conflict between the principal and agent for each action in each state,

and show that when alignment is insensitive to the state, it is optimal for the principal to select an action

without consulting the agent. When conflict is insensitive to the state, we give tight upper and lower bounds

on the approximate optimality of threshold policies. In both cases, our results offer insights into a wide range

of common economic scenarios which are robust to modeling assumptions.

1 INTRODUCTION
This paper considers a ubiquitous scenario in economic decisionmaking. A decisionmaker or

principal faces a choice in which the appropriate action is dependent on the state of the world. For

example, a firm seeks to choose a new employee from a pool of applicants with varying traits, or a

national health service must choose which treatment to provide to a patient who might display a

range of symptoms. For practical reasons, however, the principal is unable to directly observe the

state, and must rely on an agent to observe the state instead. Firms rely on managers who interview

candidates, and the health service relies on doctors to observe patients. In such arrangements, the

agent and principal tend not to have preferences which are perfectly aligned: managers may value

different traits in an employee than their own supervisor, and doctors tend to overdiagnose certain

conditions. How should the uninformed principal interpret information from the agent to manage

the misalignment of incentives and choose the appropriate action for the state?

When the principal has commitment power, the choice of a mediating device becomes a problem

of mechanism design. The agent observes the state and reports a message to the mechanism, which

chooses a possibly randomized action.
1
In this setting, deterministic mechanisms hold special

appeal. The taxation principle states that every deterministic mechanism is equivalent to a menu:

the principal selects the set of allowable actions, and the agent simply chooses their preferred

action upon observing the state. Such mechanisms eliminate the need for communication between

the agent and principal, and are therefore so common in practice that they are often taken for

granted as a managerial tool. The problem of menu design for a better-informed agent is often

referred to as delegation, coined by [14].
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It is without loss of generality to consider a single round of communication.
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Many studies of the delegation problem have focused on the case where the state is single-

dimensional and preferences are single-peaked [e.g. 2]. Because of the problem’s generality, many

well-studied economic models can also be framed as instances of delegation. Some examples include

studies of optimal taxation such as [23], tariff design [3], assortment selection [15, 25], and revenue-

maximizing pricing [6]. Both types of work on delegation have produced deep theoretical results,

which often involve detailed characterizations of optimal mechanisms.

In this work, we take a complementary approach. Rather than examine tailored, parametrized

models such as those mentioned, we consider the delegation problem from a broad perspective.

We ask: what are minimal assumptions on the model under which simple mechanisms are optimal or
approximately optimal? In other words, by viewing the problem through the lenses of simplicity

and approximation, we hope to obtain insights which are robust to modeling assumptions, and

which hold explanatory power even in the case where the spaces of states, actions, and utilities are

complex. Some settings in which such complexity is common include:

• Managerial Decisionmaking. Hierarchical structure in firms often results in a manager

relying on a better-informed subordinate for hiring decisions, implementation choices, and

project selection. In all three scenarios, each option may have many traits (e.g. lines on a

resumé), which map onto preferences for the manager and subordinate in complicated ways.

• Regulatory Design. Regulators frequently wish to manage decisions by firms which are

more complicated than the choice of a single price or a quantity to produce. Examples include

selecting a location for a new facility or designing the suite of safety features on a new

product.

• Peer-to-Peer Platforms and Crowdsourcing. On platforms such as Airbnb and Upwork,

users are presented with a slate of options - housing and guests in the first case, workers and

projects in the second. The preferences of agents on both sides of the market are typically

unknown to the platform, and typically differ from those of the market designer, who might

value traits such as fairness [see 16] or learning [see 20].

In the above settings, developing plausible, robust models represents a challenge for the theorist.

With an algorithmic approach, we seek to circumvent these difficulties and obtain structural insights

with both descriptive and prescriptive value.

1.1 Results
Our contributions are as follows.

• We introduce a fully general algorithmic model for delegation. We prove that optimal dele-

gation in the fully general formulation is not only NP-Complete, but hard to approximate

within any factor which is sublinear in the number of states or actions.

• To obtain tractable special cases, we present a method for decomposing the utility functions

of the agent and principal in a way that quantifies their misalignment in incentives for each

pair of state and actions, detailed in Section 3. We then study natural special cases where this

alignment measure is restricted in its state-dependence. In each case, we give tight analyses

of simple mechanisms. We detail these cases below.

• In Section 4, we study the case where the agent and principal agree on a value for each

action which is independent of the state, but in which the agent’s preferences undergo a

state-dependent distortion. We prove that the optimal mechanism for the principal forgoes

consulting the agent entirely, and commits to a single action ex ante. In many applications,

this explains the absence of agency (or absence entirely) of informed, subordinate parties in

organizations.
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• In Section 5 we assume the agent and principal agree on a value for each action which is

potentially state-dependent, but restrict the agent’s distortion for each action to be inde-

pendent of the state. This special case is APX-hard, but we show that threshold policies are

approximately optimal: the principal restricts the agent to actions for which the distortion is

not too large. In many applications of interest, this takes the form of budgets which limit the

agent’s ability to spend the principal’s money. Moreover, we prove our analyses are tight

with matching lower bounds.

1.2 Related Work
While many commonly-studied economic decisionmaking scenarios can be framed as delegation,

the delegation problem was first articulated as such by [14]. We focus below on work which

specifically elaborates on the model of [14], and make no attempt to survey the myriad well-studied

areas in mechanism design with informational asymmetries that incidentally place them under the

umbrella of delegation.

Much of the delegation literature has focused on the special case where the state and action

space are continuous and real-valued, and where the preferences of both the agent and principal

are single-peaked or more specifically quadratic loss. Notable examples include [2], which gives a

detailed characterization of the optimal delegation policy, and [21], which asks when the agent’s

selected action is a continuous function of the state. Additionally, [18] considers randomized

mechanisms, and derive conditions under which randomized mechanisms outperform deterministic

mechanisms.

The cheap talk model of [8] serves as a common benchmark in the delegation literature. [8]

analyzes a model with the same informational asymmetry, but a lack of commitment power on

the part of the principal. Several papers, including [22] and [9] compare the payoffs of the agent

and principal under delegation to their no-commitment payoffs under a single-peaked model of

preferences, and derive conditions under which commitment is preferred to non-commitment and

vice versa. [11] considers similar questions applied to legislative decisionmaking. We also note [19],

which interpolates between zero and full commitment giving the principal the ability to commit to

transfers but not actions.

Several papers consider extensions beyond the single-peaked model of preferences. [12] studies

an agent and principal who jointly make many identically distributed decisions, and shows that it

is beneficial for the principal to adopt a quota mechanism which resembles “grading on a curve.”

[4] analyzes a model of delegation in which the principal may force the agent to burn money as

a condition to taking certain actions. [1] and [24] consider models in which one or more of the

principal and the agent may expend effort to observe a signal about the state. These latter three

papers fall outside the scope of our model, and may represent fruitful topics for future work from

an algorithmic perspective. Finally, [5] considers a model for project selection with an approach

that bears loose resemblance to ours. It models available projects (i.e. actions) as stochastic. The

agent observes the set of realized available projects, and selects their preferred project, subject

to restrictions imposed ex ante by the principal. The utilities of the agent and principal for each

project are themselves random, and therefore the problem falls outside the single-peaked model.

Lastly, we note two recent papers with approaches similar in spirit to the present work. [17]

studies the model of [5], and draw a connection to the prophet and Pandora’s box problems, two

canonical models in optimal stopping theory. They use this similarity to show that threshold

policies are approximately optimal for the principal. While this paper’s results are intriguingly

similar to ours, model differences render them incomparable. Second, [10] studies a classical agent-

principal model of contracting with unobservable actions from the perspective of approximation

and simplicity, and prove that linear contracts are approximately optimal.
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2 MODEL
We now outline our model of delegation. We consider a principal who seeks to choose an action

from a discrete set Ω ofm actions. The principal’s utility is joint function of the action taken and

the state of the world, which the principal does not observe. We assume the set of states S is finite,

with size n. The principal may consult an agent, who observes the state, and may communicate

with the principal after observation. The agent also possesses a utility function over (action, state)

pairs, and this utility function may differ from that of the principal. We denote the utilities of the

principal and agent byUP andUA, respectively, represented asm-by-n matrices. For a matrixM , we

use eithermi, j orM(i, j) to denote its entry at row i and column j. For example,UP(i, j) measures

the utility of the principal if the agent picks action i in state j . To enable the study of approximation

algorithms, we assume the entries ofUP are nonnegative.

We assume the principal has the power to commit ex ante to a mechanism for communicating

with the agent and selecting an action. A mechanism is a function mapping a report of the agent

(after observing the state) to a (possibly randomized) action selected by the principal. We consider

deterministic mechanisms for this problem. By the taxation principle, deterministic mechanisms

may be represented as menus over the set of actions. The agent observes the state and selects their

preferred action from the menu. The principal then takes the selected action. Such mechanisms have

the advantage that they are simple to implement, and in many settings require no communication

between the agent and principal. Taking this perspective, we consider the algorithmic problem

of selecting a menu A to maximize the principal’s expected utility when the agent selects their

preferred action according to the observed state.

Formally, when presented with action set A ⊆ Ω and after observing that the state is s , denote
the agent’s preferred choice by д(A, s). That is, д(A, s) = argmaxa∈AUA(a, s). The principal is faced
with a set function optimization problem. We assume the principal has a prior distribution over the

state, with state s occurring with probability ps . The principal must select a menu A for the agent

which maximizes their own expected utility over the state. That is, the principal solves:

maximize

A⊆Ω
f (A) B

∑
s ∈S

ps ·UP(д(A, s), s)

Example 2.1. While the model above is extremely general, we instantiate it with a stylized model

of a firm seeking to buy a new piece of equipment. In the example, the firm acts as principal,

and must decide which of three possible items, A, B, and C to consider, with fixed prices pA,
pB , and pC . The firm’s management must rely on the specialist who is to use the equipment for

recommendations as to quality. This operator serves the role of the informed agent. Hence the firm

delegates the decision to the agent by offering a nonempty subset of the items, from which the

operator will make a recommendation. Both parties benefit from the equipment being well-suited to

its task, but only the firm internalizes the monetary costs, leading to a misalignment of incentives.

We consider three states corresponding to three different profiles of needs to which each piece

of equipment is more or less suited, which we can represent by the following matrix, which we

populate with values for concreteness.

1 2 3

A 2 5 6

B 4 6 7

C 7 4 6

The first column corresponds to state of the world in which equipment C is most suitable, while in

the other states, B performs best. Instantiating the items’ prices as pA = 1, pB = 3, and pC = 4, we
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produce the following utility matrix for the principal, whose utility is value minus price (UP, at left):

UP =


1 4 5

1 3 4

3 0 2

 , UA =


2 5 6

4 6 7

7 4 6

 .
That is, purchasing item A under state 1 gives the principal utility 2 − 1 = 1, and the other entries

of the matrix follow similarly. Since the operator does not pay for the equipment, his utility matrix

is simply determined by the value of equipment in each state. The agent’s utility matrix is at right,

above (UA). Note that because the prices change the principal’s utility for the items, the principal’s

and agent’s incentives are misaligned for example under state 2 - the operator prefers to buy item

B, while the principal wants to buy cheaper equipment A.
Under the state indexed j, the operator picks their most desired item д(X , j) from the set X of

available items. For example, if X is the set of all items, we would have:

д(X , j) =


C j = 1,

B j = 2,

B j = 3.

The principal could decide not to make all the items available, and instead offer Y = {A,C}, for
example. In this case, the operator would prefer item C under job type 1, and would prefer item A
under the second and third states. Assuming a uniform distribution over states, the expected utility

of the principal is maximized by offering Y , and is calculated as:

f (Y ) =
1

3

∑
j ∈{1,2,3}

UP(д(Y , j), j) =
1

3

UP(C, 1) +
1

3

UP(A, 2) +
1

3

UP(A, 3) =
3 + 4 + 5

3

= 4.

To preview our results, we show that in settings such as the one described above, it is always

approximately optimal for the firm to impose a budget on the agent. In this example, there are two

reasonable choices for optimal budget: 1 and 4, both of which give the firm expected utility of 10/3.

In Appendix A.3, we give another example which models a firm which must select a project

for a worker to undertake. The worker observes and internalizes the project-specific labor costs,

whereas the firm does not. For settings such as this one, we will show that the optimal mechanism

always selects a single action, which is imposed on the agent.

Computational Hardness of the General Case. To conclude our preliminary discussion of the

model, we briefly analyze the complexity of the fully general version of the problem discussed

above. Unfortunately, as stated, the problem is computationally intractable in a very strong sense,

stated below.

Theorem 2.2. The delegation problem is NP-hard and also hard to approximate within any factor
less than min{m,n}.

A proof can be found in Appendix A.1. The reduction used to prove Theorem 2.2 rules out

approximation based on most interesting parameters: the reduction has a uniform distribution

over states, the principal’s utility is binary (zero or one), and the agent’s utility is limited to three

different values. Hence, it is necessary to place restrictions on the problem to permit approximation.

We discuss one natural way of doing so in the next section.

3 UTILITY DECOMPOSITION
In light of the hardness result of Theorem 2.2, we turn to special cases of the delegation problem. To

identify special cases which are still sufficiently broad to apply to the motivating settings mentioned



Algorithmic Delegation 6

in Section 1, we decompose the principal’s and agent’s utility matrices to isolate the portion of

their utility which is mutual, and the portion which is derived from player-specific distortion of

utilities. Formally:

Definition 3.1. Given an instance (UP ,UA) of the delegation problem, a utility decomposition for

(UP ,UA) is given by constants a1, a2, a3, and a4 and matricesV and D such thatUP = a1V −a2D and

UA = a3V +a4D. We refer to a1, a2, a3, and a4 as the decomposition coefficients of (a1,a2,a3,a4,V ,D),
V as the value matrix, and D as the distortion matrix.

For any decomposition coefficients (as long as a1a4 + a2a3 , 0) we may obtain a corresponding

utility decomposition by setting

V = (a1a4 + a2a3)
−1(a4UP + a2UA)

D = (a1a4 + a2a3)
−1(−a3UP + a1UA).

Many settings, however, naturally admit particular utility decompositions in which the value

or distortion matrix exhibit considerable structure. In the example in Appendix A.3, a firm (the

principal) must select one of several projects for a team (the agent) to undertake. While both the

team and firm benefit from undertaking a project, only the team observes and internalizes the

project-specific costs. Hence, the benefits of the projects are a natural choice for the value matrixV ,

and the state-specific effort costs paid by the agent serve as the distortionD, yielding decomposition

coefficients a1 = a3 = 1, a2 = 0, and a4 = −1. Note that because the value of each project is known

in advance, all columns of V are identical. This will often be the case when the source of distortion

are effort costs that depend on information which is unknown to the principal, but where benefits

are known to all parties in advance. We refer to this condition as restricted value. Formally:

Definition 3.2. An instance of delegation with utility decomposition (a1,a2,a3,a4,V ,D) satisfies
restricted value if all columns of V are identical.

In procurement setting of Example 2.1, the benefits to the firm from new equipment are a natural

choice for the value matrixV , in which case the monetary costs paid by the firm serve as distortion

D, yielding decomposition coefficients of a1 = a2 = a3 = 1 and a4 = 0. Note that in this case,

the costs are state-invariant; that is, all columns of D are identical. This will often be the case in

settings with transfers that are known in advance. We refer to this condition as restricted distortion.
Formally:

Definition 3.3. An instance of delegation with utility decomposition (a1,a2,a3,a4,V ,D) satisfies
restricted distortion if all columns of D are identical.

The restricted distortion and restricted value conditions still capture a variety of settings of

interest (and in particular those for which existing models are ill-suited). In what follows, we

study the effectiveness of simple delegation policies under each condition. In Section 4, we show

that under the restricted value condition, an extremely simple policy is always optimal: pick the

best single action and force the agent to take it. Therefore, under the restricted value condition,

a principal may not choose to delegate authority in the first place, and may do away with the

informed agent altogether if possible. Hence, what appears as a single-agent problem may only

appear so because of incentive problems the principal seeks to avoid.

In Section 5, we consider the restricted distortion condition, and show that no simple optimal

strategy generally exists. In particular, we show that the delegation problem under restricted distor-

tion is APX-hard. Unlike in the general case, however, we show that there are simple strategies that

are approximately optimal for the principal. Since the distortion of each action is state-independent,
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the principal may sort actions by their distortion, and restrict the agent to actions with low distor-

tion, i.e. below some threshold. In the procurement example, this takes the form of a budget imposed

on the agent. We show that the best such threshold policy is a O(logp−1

min
)-approximation, where

pmin is the probability of the least likely state. Hence, the performance of simple policies degrades

smoothly with the degree of uncertainty faced by the principal. We also show in Section 6 that when

distortions are nonpositive and agent utilities are nonnegative, this improves to a 2-approximation.

On Decomposition Coefficients. For the remainder of the paper, we assume a1 = a2 = a3 = a4 = 1,

and assume restricted value or distortion hold with respect to these coefficients. We do so only

for simplicity of exposition. All results extend straightforwardly to any other nontrivial choice

of decomposition coefficients. Consequently, the restricted value result of Theorem 4.4 holds for

the project selection setting instantiated in Appendix A.3 and the results of Section 5 hold for the

procurement setting of Example 2.1.

4 RESTRICTED VALUE
In this section, we study the restricted value case. We assume the decomposition coefficients are

a1 = a2 = a3 = a4 = 1. That is, the utilities can be decomposed as UP = V − D and UA = V + D,
and all columns of V are identical. As discussed at the end of the previous section, our analysis

extends straightforwardly to other choices of decomposition coefficients. Since each column of V
is identical, for the rest of this section we let vi denote the value which populates the ith row of V ,

i.e. the value associated with action i .
Our main result under the restricted value assumption is that the optimal mechanism for the

principal is to choose the action that maximizes their expected utility ex ante, and impose this

action on the agent as the singleton delegation set. To prove this result, we derive an intuitive

consequence of the restricted value condition. Because the state only affects the utilities of the agent

and principal in a way that causes their preferences to diverge, it follows that any time the agent

would change their decision based on the state, the principal would prefer the opposite. Moreover,

if the agent was restricted in their strategy to choose each action with a certain frequency, they

would allocate their action “quotas” in a way that exactly minimizes the principal’s utility over all

strategies satisfying the frequency restriction. We formalize this notion as follows:

Definition 4.1. Given a delegation set A, the frequency of an action a under A, denoted qa , is the
probability the agent takes action a, given by

∑
s ∈S ps1[д(A, s) = a].

Definition 4.2. Given a delegation set A and action frequencies (q1, . . . ,qm) for A, an action
reassignment is anm × n matrix R such that:

(1) For all a ∈ Ω and s ∈ S , ras ≥ 0.

(2) For all s ∈ S ,
∑

a∈Ω ras = 1.

(3) For all a ∈ Ω,
∑

s ∈S psras = qa .

Action reassignments represent feasible solutions to the following thought experiment: given

a delegation set A, allow the principal to observe the state and assign actions in A to states in a

probabilistic fashion, subject to the constraint that the frequency of each action is the same as if

the agent was choosing the action for each state. Because the only state-dependent part of the

agent’s utility is exactly misaligned with that of the principal, any reassignment of actions to states

is preferable for the principal to the assignment selected by the agent. This can be interpreted as an

“anti-alignment” condition, and functions as an obverse to the alignment condition discussed in e.g.

[12]. Formally:
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Lemma 4.3. If utilities satisfy the restricted value condition, then for any delegation set A and any
action reassignment R, the principal’s utility satisfies:∑

s ∈S

psUP(д(A, s), s) ≤
∑
s ∈S

∑
a∈Ω

psrsaUP(a, s)

Proof. In state s , faced with action set A, the agent chooses action д(A, s). An alternate, random-

ized strategy the agent could employ would be to choose action a in state s with probability ras , for
every state s . This deviation is suboptimal for the agent, so we have:∑

s ∈S

psvд(A,s) +
∑
s ∈S

psD(д(A, s), s) ≥
∑
s ∈S

ps
∑
a∈Ω

rasva +
∑
s ∈S

ps
∑
a∈Ω

rasD(a, s). (1)

Note that the first term on each side of (1) is only a function of the number of times each action is

taken under the agent’s optimal strategy. But note that by condition (3) of Definition 4.2, action

reassignments preserve these frequencies. Hence,∑
s ∈S

psvд(A,s) =
∑
a∈Ω

qava =
∑
s ∈S

ps
∑
a∈Ω

rasva (2)

It follows that the agent prefers takingд(A, s) in state s toд(A,π (s)) solely because of the component

of their utility which is misaligned with the principal’s, i.e.:∑
s ∈S

psD(д(A, s), s) ≥
∑
s ∈S

ps
∑
a∈Ω

rasD(a, s). (3)

Combining (2) and (3) yields the following inequality, which is equivalent to the lemma:∑
s ∈S

psvд(A,s) −
∑
s ∈S

psD(д(A, s), s) ≥
∑
s ∈S

ps
∑
a∈Ω

rasva −
∑
s ∈S

ps
∑
a∈Ω

rasD(a, s). (4)

□

Theorem 4.4. If utilities satisfy the restricted value condition, then there is an optimal delegation
set which is a singleton.

Proof. Let A∗ be an optimal delegation set, and let (q∗
1
, . . .q∗m) denote the action frequencies

under A∗. It is a feasible action reassignment to take action i with probability q∗a , regardless of the
state. That is, define an action reassignment R∗ such that r ∗as = q

∗
a for all s ∈ S . By Lemma 4.3, we

have: ∑
s ∈S

psUP(д(A
∗, s), s) ≤

∑
s ∈S

ps
∑
a∈Ω

r ∗asUP(a, s)

=
∑
s ∈S

ps
∑
a∈Ω

q∗aUP(a, s)

=
∑
a∈Ω

q∗a

∑
s ∈S

psUP(a, s)

The last line above can be interpreted as the expected utility from choosing an action a with

probability q∗a and playing this action in every state. Since this is at least the principal’s utility from

allowing the agent to choose from the set A∗, it follows that there must be an action a∗ such that

playing a∗ in every state yields at least as much utility as allowing the agent to choose from A∗.
This proves the theorem. □
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5 RESTRICTED DISTORTION
We now turn our attention to the restricted distortion assumption. That is, we assume the columns

of the distortion matrix D are identical.
2
For notational convenience, for a given action a we will

denote by da the value populating the ath row of the distortion matrix D, and we will refer to da as

the distortion of action a. For a given state i , we will denote by pi the probability of the state i got
picked.

Given the previous section’s main result, that there is always a simple optimal mechanism under

restricted values, one may expect the same to be true for restricted distortion. Our first result is

that this is not the case. This version of the problem is not just NP-hard, but APX-hard, ruling out

constant approximations below a certain factor.

Theorem 5.1. If utilities satisfy restricted distortion condition, the principal’s delegation problem is
APX-hard, even under uniformly distributed states.

Proof. See Appendix A.4. □

While Theorem 5.1 rules out mechanisms which are both simple and optimal, it does not rule

out mechanisms which are simple and approximately optimal. Our second result of this section is

that such mechanisms generally exist. Under the restricted distortion condition, it is possible to

rank actions based on their distortion. The most natural, simple class of delegation mechanisms to

analyze, then, is threshold policies, which include actions with distortion below a certain level, and

exclude those above. Since there are polynomially many such thresholds, analyzing the performance

of best threshold is of special interest. We formalize this in Algorithm 1.

In the rest of this section, we prove tight approximation guarantees for the best threshold of

Algorithm 1, and show that it is a Θ(logp−1

min
)-approximation, where pmin denotes the probability

of the least likely state. Hence, threshold policies perform well under low levels of uncertainty, and

their performance gradually degrades as the uncertainty grows more extreme. We state our results

formally below.

Theorem 5.2. Algorithm 1 is a 2 log(p−1

min)-approximation under restricted distortion, where pmin is
the probability of the least likely state.

Theorem 5.3. There exists a family of instances where no threshold policy is better than aΩ(logp−1

min)-
approximation.

To prove Theorem 5.2, we first argue in Section 5.1 for the general case where a known outside

option is introduced. A known outside option is a special action which is always available to

the agent. In other words, the principle must include the outside option in the action set. We

subsequently show how a restricted distortion case without outside option can be turned into

one with known outside option. A family of examples proving Theorem 5.3 can be found in

Appendix A.5.

5.1 Upper Bound for Known Outside Option
We begin our proof of the our upper bound by considering known outside option. We derive the

following:

Theorem 5.4. Algorithm 1 is a 2 log (p−1

min)-approximation algorithm3 under the restricted distortion
assumption with known outside option.
2
As in the previous section, we argue only for the decomposition with a1 = a2 = a3 = a4 = 1, though our results hold for

all other decompostions as well. See Section 3.

3
Logarithms are with respect to base 2.
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ALGORITHM 1: Restricted Distortion Delegation

Input: Set of actions Ω, set of states S , value (V ) and distortion (D) matrices.

Output: Set of actions A that approximately maximizes f (A).
UP = V − D,UA = V + D.
for each k ∈ {1, 2, ...,m} do

threshold = dk .
Set Ak ← {i ∈ Ω : di ≤ threshold}.

end
Let A B {A1, ...,Am}.

Return argmaxA∈A f (A).

The proof of Theorem 5.4 relies on partitioning the set of states into two subsets of high and

low distortion. Let OPT be the optimal solution and dmax = maxi ∈OPT di be the highest distortion
in OPT .4 We will ignore actions with higher distortion than dmax, as we may achieve the desired

approximation guarantee while doing so.

Let ∆ > 0 be a constant to be selected shortly. We say that a state is high-distortion (HD) if OPT
chooses an action with distortion d ∈ [dmax −∆,dmax] in that state, and otherwise the state is called

low-distortion (LD). These definitions give a partition of the states into two sets SHD and SLD with

total probability P1 and P2 such that S = SHD ∪ SLD, and P1 + P2 = 1. As P1 and P2 are increasing

and decreasing functions of ∆, respectively, there exists a ∆ such that P1 = P2 = 1/2.5 Choose ∆
such that this holds.

Let OPTHD
and OPT LD

be the utility of the principal from each partition, i.e.,

OPTHD =
∑
i ∈SHD

pi (vai ,i − dai ), OPT LD =
∑
i ∈SLD

pi (vai ,i − dai ), (5)

where ai is the index of the action that OPT picks in state i , and clearly OPT = OPTHD +OPT LD
.

The following lemma states that the portion of principal’s optimal utility (OPT ) coming from

high-distortion states can be approximated up to a constant factor, by picking the better of two

threshold solutions.

Lemma 5.5. Let APX1 = {i ∈ Ω : di ≤ dmax} and APX2 = {i ∈ Ω : di ≤ dmax − ∆}, i.e., sets of
actions that has distortion no more than dmax and dmax − ∆, respectively.6 Then:

max { f (APX1), f (APX2)} ≥
1

2

OPTHD.

Proof. Let bi denote the action picked by the approximate solution (which can be either APX1

or APX2) in state i . Considering APX1, in each state i ∈ S we have

vbi ,i + dbi ≥ vai ,i + dai ,

4
Interchangeably, we use OPT (APX ) to denote both the optimal (approximate) set of actions that the principal should

allow, and also the optimal (approximate) utility that he achieves by doing so.

5
In the case that P1 , P2, the arguments hold by choosing ∆ such that P1 < 1/2, P2 > 1/2 and putting the highest distortion

action in SLD to SHD will result in P1 > 1/2 and P2 < 1/2. For simplicity of exposition, we assume that P1 = P2 exists. If

there is no value of ∆ where in n1 + n2 = n, then there is a jump in n1 at some ∆ = ∆0. Then there are k states in which

the action picked by the agent has distortion equal to dmax − ∆0. In that case, we can pick ∆0 as our distortion margin (∆)
and divide those k states between SHD and SLD such that they have the desired sizes.

6
Note that dmax and ∆ require knowledge of the optimal solution. They are being used solely for analysis, rather than as

part of our algorithm.
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since the agent decided to choose bi , while ai was also allowed in APX1. This implies the following

helpful inequality which relates the loss in principal’s utility to the distortion difference of chosen

actions:

vbi ,i − dbi ≥ vai ,i − dai + 2(dai − dbi ). (6)

Equation (6) has the following interpretations: First, the principal gains (in a particular state i) if
the agent picks an action with lower distortion in the approximate solution (dbi ≤ dai ). Second, in
case the agent picks an action with higher distortion than that of the optimal solution, the loss in

principal’s utility is bounded by twice the distortion difference. However, this difference is bounded

by ∆ in the high-distortion states, because for i ∈ SHD we have dai ≥ dmax − ∆ ≥ dbi − ∆, which
implies

dbi − dai ≤ ∆. (7)

Using these two inequalities we can get the following lower bound on APX1:

f (APX1) =
∑
i ∈S

pi (vbi ,i − dbi ) ≥
∑
i ∈SHD

pi (vbi ,i − dbi ) (8a)

≥
∑
i ∈SHD

pi (vai ,i − dai + 2(dai − dbi )) (8b)

≥
∑
i ∈SHD

pi (vai ,i − dai − 2∆) = OPTHD − 2P1∆ = OPT
HD − ∆, (8c)

where in the first inequality we just restricted the summation to the set of high-distortion actions,

in (8b) we used inequality (6), and in (8c) we used inequality (7) and the fact that P1 = 1/2.

ConsideringAPX2, we still have inequality (6) for low-distortion states, because by the definition

of low-distortion state, action ai has a distortion no more than dmax − ∆ and therefore it is allowed

in APX2. However, we need a new bound on the distortion differences. Note that by the positivity

assumption of principal’s utility, the utility of the agent from picking the highest-distortion action

inOPT is at least 2dmax (for all i ∈ S), hence any action that is picked in any state i has to satisfy at

least

vai ,i + dai ≥ 2dmax,

which can be rearranged as

dmax − dai ≤
vai ,i − dai

2

.

Since we allow actions up to the distortion of dmax − ∆ with an exception–the outside option, we

get this bound on the distortion difference if we ignore the outside option:

dbi − dai ≤ dmax − ∆ − dai ≤
vai ,i − dai

2

− ∆. (9)

Then if we include the outside option, there are two circumstances–the outside option is in SLD or

in SHD. If outside option is in SLD, the above statement holds. If the outside option is in SHD, for
i ∈ SLD, the agent won’t pick the outside option. Therefore, the above statement holds in either

circumstances. Now we can find a lower bound on APX2.

f (APX2) =
∑
i ∈S

pi (vbi ,i − dbi ) ≥
∑
i ∈SLD

pi (vbi ,i − dbi ) (10a)

≥
∑
i ∈SLD

pi (vai ,i − dai + 2(dai − dbi )) (10b)

≥
∑
i ∈SLD

pi

(
vai ,i − dai − 2

(vai ,i − dai
2

− ∆
) )
= 2P2∆ = ∆, (10c)
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where this time we restricted the summation to the set of low-distortion actions, in (10b) we used

inequality (6), and in (10c) we used inequality (9) and the fact that P2 = 1/2.

We finish the proof by showing that the better solution amongAPX1 andAPX2 is a 2-approximation

for OPTHD
.

max { f (APX1), f (APX2)} ≥
1

2

(f (APX1) + f (APX2)) ≥
1

2

(OPTHD − ∆ + ∆) =
1

2

OPTHD.

□

Now we are ready to analyze the performance of Algorithm 1. We use an inductive argument to

show that the previous 2-approximation of OPTHD
implies an O(logn)-approximation for OPT .

Proof of Theorem 5.4. We prove by induction (on the number of states) that there exists a

2 logn-approximation algorithm for OPT . Intuitively, if OPTHD
is the dominant part of OPT , then

max { f (APX1), f (APX2)} from Lemma 5.5 is a good approximation forOPT too. On the other hand

if OPT LD
is dominant, we can ignore all the high-distortion states without losing much, and this

reduces the number of states by half.

For the base case, we show that there exists a 2-approximation for n = 2 states. Clearly, the

expected principal’s utility is the average of the utilities in the two states, and therefore one of

these states has a utility of at least OPT . Let i∗ ∈ {1, 2} be that particular state, and ai∗ be the
corresponding action in the optimal solution. The solution that consists of ai∗ and all actions with

lower distortion will be a 2-approximation. It is guaranteed to generate at least OPT utility in

state i∗ which happens with probability half, because it cannot go to higher distortion levels and

its utility will be at least equal to what OPT provides, based on (6). Now assume that we have a

2 log
n
2
-approximation for any problem with n/2 states. For the problem with n states, one of the

following happens:

Case I (Dominant OPTHD). If we have OPTHD ≥ 1

log (p−1

min )
OPT , then

max { f (APX1), f (APX2)} ≥
1

2

OPTHD ≥
1

2 log (p−1

min)
OPT ,

which is the desired approximation ratio.

Case II (DominantOPT LD). In this case we have the opposite assumptionOPTHD < 1

log (p−1

min )
OPT ,

which implies:

OPT LD ≥

(
1 −

1

log (p−1

min)

)
OPT =

log (p−1

min)/2

log (p−1

min)
OPT .

Now using the 2 log

(p−1

min )

2
-approximation (inductive assumption) on the set SLD will give a solution

APX LD
such that

f (APX LD) ≥
1

2 log (p−1

min)/2
OPT LD.

Combining the two inequalities we get:

f (APX LD) ≥
1

2 log (p−1

min)/2
×

logp−1

min/2

log (p−1

min)
OPT =

1

2 log (p−1

min)
OPT ,

which again gives the desired approximation ratio.

Finally, note that even though dmax, ∆, S
LD
, and SHD in the proof are all defined based on the

optimal solution and hence are not known, all the proposed approximate solutions (i.e., APX1,

APX2, or the base case solution) have a simple structure. There exists a distortion threshold such
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that every action with lower distortion is allowed, and everything else is excluded. Therefore, the

approximate delegation solution can be found by the linear-time search of Algorithm 1. This proves

the theorem. □

Matching lower bound. We conclude by emphasizing that the above analysis is tight. We show

in Appendix A.5 that our analysis in Theorem 5.4 is tight up to a constant factor. We do so by

providing instances where no threshold policy can outperform the logarithmic approximation ratio.

5.2 Extension To Unknown Outside Option
In reality, principles do not have enough information about the outside options, so this leads to the

idea of unknown outside option. In unknown outside option case, instead of knowing the exact

details of the outside option, the principle only know a range of the outside option’s distortion.

Then the principle wants to maximize its minimum utility from picking the worst outside option.

Theorem 5.6. Restricted distortion with unknown outside option is equivalent to known outside
option case and thus have 2 log P−1

min−approximation rate

To prove theorem 5.6, we first observe that an outside option can be make ’worse’ for the principle

by making the principle utility smaller, i.e., with the small distortion, an outside option with all

zero principle utility is worse than one with all non-zero principle utility. Then to make it even

worse, we want the agent to actually pick this bad outside option, so we let the agent utility to be

as large as possible. We can choose the largest distortion such that the agent utility is maximized

while the principle utility is zero. Then this outside option is always the worst for principle. Then

we have showed the unknown outside option case is equivalent to known outside option.

5.3 Extension To Non-Uniform States
We now extend the approximation result for restricted distortion from uniformly distributed to

arbitrarily distributed states. We do so via a reduction that loses a factor of 2. For uniformly

distributed states, the approximation ratio depended on the number of states. For non-uniform

states, the natural analog is the inverse of the probability of the least likely state.

LetUP ,UA be an instance of the delegation with states distributed according to (p1, . . . ,pn). Let
pmin = mins ∈S ps be the probability of the least likely state. We will construct a new instance of the

problem with the same actions, a new set of uniformly distributed states, and where the principal’s

utility from any delegation set is within a constant factor in the two instances. The number of states

in the new instance will be at most p−1

min
. Furthermore, if the original instance satisfied restricted

distortion, so too will the new instance.

The rough approach to the reduction will be rounding each state’s probability down to the

nearest factor of pmin (and normalizing). Doing so will distort the utility from any delegation set by

at most a factor of 2. We may then divide each state evenly into many identical copies which each

occur with probability pmin.

Formally, for each state s , let p̄s = pmin⌊ps/pmin⌋ be ps rounded down to the nearest factor of pmin.

In our new instance, we will replace s with k(s) = ⌊ps/pmin⌋ identical states, labeled s
1, . . . , sk (s).

The new probabilities will be given by p ′s1
= p ′s2

= . . . = p ′
sk (s )
= pmin/c , where c =

∑
s ∈S p̄s

is a normalizing constant to ensure probabilities sum to 1. Our new utilities will be given by

UP

′(a, si ) = cUP(a, s) andUA

′(a, si ) = cUA(a, s) for all a ∈ Ω, s ∈ S , and i ∈ {1, . . . ,k(s)}. Note that
in state si for any s and i ∈ {1, . . . ,k(s)}, the agent’s preferences over actions are identical to their

preferences in state s of the original instance. We now show that because pmin was smaller than all

other probabilities, rounding in the manner discussed does not distort utilties significantly for the

principal. In particular:



Algorithmic Delegation 14

Lemma 5.7. For any delegation set A, let f (A) denote the principal’s utility from A in the original
instance, and f ′(A) the principal’s utility from A in the transformed instance. The following inequality
holds:

2f ′(A) ≥ f (A) ≥ f ′(A).

Proof. We first prove f (A) ≥ f ′(A). We have:

f ′(A) =
∑
s ∈S

k (s)∑
i=1

p ′s iUP

′(д(A, si ), si )

=
∑
s ∈S

p̄sUP(д(A, s), s)

≤
∑
s ∈S

psUP(д(A, s), s) = f (A)

In fact, if we show 2p̄s ≥ ps for all s ∈ S , then the above analysis also implies 2f ′(A) ≥ f (A). This
latter fact follows from the observation that ps − p̄s ≤ pmin ≤ p̄s . □

The above mapping from delegation instances with arbitrarily distributed states to those with

uniformly distributed states immediately implies that we may use approximation algorithms from

the latter setting to obtain approximately optimal solutions to the former. This will immediately

yield Theorem 5.2 as a corollary. Formally:

Theorem 5.8. Letα(·) be a nondecreasing function that is at least 1. Then for anyα(n)-approximation
algorithm for delegation instances with uniformly distributed states, there exists a 2α(p−1

min)-approximation
algorithm for delegation instances with arbitrarily distributed states.

Proof. Let an approximation algorithm for uniform states be given. Consider running the

algorithm in question on the uniform instance constructed above, and let A and A∗ be the set of
actions produced by the algorithm and an optimal solution, respectively. Further let A′ denote an
optimal solution to the uniform instance. Note that the number n′ of states in the uniform instance

is at most p−1

min
. By Lemma 5.7, the we have the following sequence of inequalities, which implies

the result.

f (A) ≥ f ′(A) ≥ 1

α (n′) f
′(A′) ≥ 1

α (p−1

min
)
f ′(A′) ≥ 1

α (p−1

min
)
f ′(A∗) ≥ 1

2α (p−1

min
)
f (A∗).

□

We conclude by re-emphasizing that Theorem 5.2 is asymptotically tight. The uniform states

example in Appendix A.5 also applies in the more general setting of non-uniform states. Moreover,

note that combining identical states yields an example with many fewer states, ruling out the

possibility of an approximation factor which depends only on the number of states and not their

distribution.

6 SPECIAL CASES WITH RESTRICTED DISTORTION
We finally note two additional assumptions which together immediately imply threshold policies

are a constant-approximation. First, throughout the paper we have assumed that the principal’s

utility for every action and every state was nonnegative; this was to make approximation sensible.

For the agent, on the other hand, the sign of their utility was not important. The only thing that

mattered was their preference ordering over actions in each state. In this section, we add the

assumption that the agent’s utilities are also nonnegative, i.e.UA(a, s) ≥ 0 for all a ∈ Ω and s ∈ S .
Second, we note that prior to this section, the utility decomposition might yield distortions

which are negative. In some settings, distortions are nonpositive. This might occur, for example, if
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distortions take the form of transfers from the agent to the principal, or as costs felt only by the

agent. In this section, we assume that da ≤ 0 for all a ∈ Ω.
Under these two assumptions (and taking the decomposition with coefficients a1 = a2 = a3 =

a4 = 1), we may writeUP = V +D−2D. The agent’s utility is given byV +D, and is maximized by the

threshold strategy that offers the full set of actions. Meanwhile, selecting the action with the most

negative distortion maximizes the term −2D, and is also a threshold strategy. This yields a simple

argument that threshold strategies are a 2-approximation. In fact, a more nuanced characterization

can be obtained, and is summarized in the following two theorems, proved in Appendices A.6

and A.7.

Theorem 6.1. Algorithm 1 is a (2 − pmin)-approximation algorithm for the delegation problem
under restricted distortion assumption, when the distortions are nonpositive and the agent’s utilities
are nonnegative.

Theorem 6.2. There exists a family of instances satisfying restricted, nonpositive distortion and
nonnegative agent utilities such that Algorithm 1 is at best a (2 − pmin)-approximation.

ACKNOWLEDGMENTS
The authors would like to thank Bobby Kleinberg for observing the approximation-preserving

reduction from Independent Set, and Hamsa Bastani and Rediet Abebe for helpful discussions. Part

of this work was done while Ali Khodabakhsh and Emmanouil Pountourakis were visiting the

Simons Institute for the Theory of Computing.

REFERENCES
[1] Philippe Aghion and Jean Tirole. 1997. Formal and real authority in organizations. Journal of political economy 105, 1

(1997), 1–29.

[2] Ricardo Alonso and Niko Matouschek. 2008. Optimal delegation. The Review of Economic Studies 75, 1 (2008), 259–293.
[3] Manuel Amador and Kyle Bagwell. 2010. On the optimality of tariff caps. Unpublished working paper (2010).
[4] Attila Ambrus and Georgy Egorov. 2017. Delegation and nonmonetary incentives. Journal of Economic Theory 171

(2017), 101–135.

[5] Mark Armstrong and John Vickers. 2010. A model of delegated project choice. Econometrica 78, 1 (2010), 213–244.
[6] Shuchi Chawla, Jason D Hartline, and Robert Kleinberg. 2007. Algorithmic pricing via virtual valuations. In Proceedings

of the 8th ACM conference on Electronic commerce. ACM, 243–251.

[7] Andrea EF Clementi and Luca Trevisan. 1999. Improved non-approximability results for minimum vertex cover with

density constraints. Theoretical Computer Science 225, 1-2 (1999), 113–128.
[8] Vincent P Crawford and Joel Sobel. 1982. Strategic information transmission. Econometrica: Journal of the Econometric

Society (1982), 1431–1451.

[9] Wouter Dessein. 2002. Authority and communication in organizations. The Review of Economic Studies 69, 4 (2002),
811–838.

[10] Paul Dütting, Tim Roughgarden, and Inbal Talgam-Cohen. 2018. Simple versus Optimal Contracts. arXiv preprint
arXiv:1808.03713 (2018).

[11] David Epstein and Sharyn O’Halloran. 1999. Asymmetric information, delegation, and the structure of policy-making.

Journal of Theoretical Politics 11, 1 (1999), 37–56.
[12] Alexander Frankel. 2014. Aligned delegation. American Economic Review 104, 1 (2014), 66–83.

[13] Johan Håstad. 1999. Clique is hard to approximate within n1−ε
. Acta Mathematica 182, 1 (1999), 105–142.

[14] Bengt Robert Holmstrom. 1978. On Incentives and Control in Organizations. Ph. D. Dissertation.
[15] Nicole Immorlica, Brendan Lucier, Jieming Mao, Vasilis Syrgkanis, and Christos Tzamos. 2018. Combinatorial Assort-

ment Optimization. In International Conference on Web and Internet Economics. Springer, 218–231.
[16] Sampath Kannan, Michael Kearns, Jamie Morgenstern, Mallesh Pai, Aaron Roth, Rakesh Vohra, and Zhiwei Steven Wu.

2017. Fairness Incentives for Myopic Agents. In Proceedings of the 2017 ACM Conference on Economics and Computation.
ACM, 369–386.

[17] Jon Kleinberg and Robert Kleinberg. 2018. Delegated Search Approximates Efficient Search. In Proceedings of the 2018
ACM Conference on Economics and Computation. ACM, 287–302.



Algorithmic Delegation 16

[18] Eugen Kovác and Tymofiy Mylovanov. 2009. Stochastic mechanisms in settings without monetary transfers: The

regular case. Journal of Economic Theory 144, 4 (2009), 1373–1395.

[19] Vijay Krishna and John Morgan. 2008. Contracting for information under imperfect commitment. The RAND Journal
of Economics 39, 4 (2008), 905–925.

[20] Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, and Zhiwei Steven Wu. 2016. Bayesian exploration: Incen-

tivizing exploration in bayesian games. arXiv preprint arXiv:1602.07570 (2016).
[21] David Martimort and Aggey Semenov. 2006. Continuity in mechanism design without transfers. Economics Letters 93,

2 (2006), 182–189.

[22] Nahum D Melumad and Toshiyuki Shibano. 1991. Communication in settings with no transfers. The RAND Journal of
Economics (1991), 173–198.

[23] James A Mirrlees. 1971. An exploration in the theory of optimum income taxation. The review of economic studies 38, 2
(1971), 175–208.

[24] Dezsö Szalay. 2005. The economics of clear advice and extreme options. The Review of Economic Studies 72, 4 (2005),
1173–1198.

[25] Kalyan Talluri and Garrett Van Ryzin. 2004. Revenue management under a general discrete choice model of consumer

behavior. Management Science 50, 1 (2004), 15–33.
[26] David Zuckerman. 2006. Linear degree extractors and the inapproximability of max clique and chromatic number. In

Proceedings of the thirty-eighth annual ACM symposium on Theory of computing. ACM, 681–690.

A SUPPLEMENTARY MATERIALS
A.1 General Hardness Result
Here we analyze the delegation problem in full generality. We show that the problem is hard

to approximate within any sublinear factor. This holds even if the distribution over the states is

uniform, the principal’s utility is binary (zero or one), and the agent’s utility is limited to three

different values.

Proof. We reduce from the Maximum Independent Set (MIS) problem. Given an instance of

the MIS problem G = (V, E)7 with |V| = N , we build an instance of the delegation problem with

N actions and N states; i.e., one action and one state corresponding to each vertex of G. We also

assume that the states happen with the same probability 1/N . We set the utility of the principal to

be the identity matrix, i.e.,UP = IN×N . For the agent, the utility of action i at state j is defined by:

UA(i, j) =


1 if i = j,

2 if {i, j} ∈ E,

0 otherwise.

(11)

Choosing a set of actions by the principal can be thought as choosing a subset S ⊆ V . We claim

that the utility of the principal is less than or equal to |S|/N , with equality if and only if S is an

independent set in G. The inequality is clear because at each state i ∈ S, the principal can get at

most one by the choice of UP (and zero in other states). For the equality to occur, the agent should

choose the action i at each state i ∈ S. This requires that no neighbor of i is available, and hence S

is an independent set.

By the previous argument, the maximum independent set maximizes the utility of the principal.

On the other hand, given a solution of the delegation problem with (principal’s) utility value k/N ,

one can find an independent set of size k (by just selecting the states where the utility of the

principal is non-zero). This implies that our reduction also preserves the objective values (besides

normalizing by N ). Therefore, delegation inherits the hardness of approximation of the MIS problem

[13, 26]. □

7
Throughout the paper, we use calligraphic letters for graph instances to distinguish between V (set of vertices) and V
(value matrix in delegation instance).
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A.2 Hardness Result for Restricted Value with Known Outside Option
Here we will show that given a known outside option, restricted value case is hard to approximate

within any sublinear factor, which is similar to the general case.

Proof. In this section, we construct a restricted value case that is equivalent to example in the

previous section. We set the utility of the agent to be the utility of the example in the previous

section. For the principle, the utility of action i at state j is defined by:

UA(i, j) =


1 if i = j,

0 if {i, j} ∈ E,

2 otherwise.

(12)

Note that for any action i state j pair, UA(i, j) +UP(i, j) = 2, so this case is restricted value. Then

we set the outside option in the following way: let agent utility be 0 < ϵ < 1 for all states; let

principle utility be 0 for all states. Then if i = j or {i, j} < E, the agent will not pick the outside

option. Otherwise only if {i, j} ∈ E, the agent will pick the outside option. Then the principle’s

utility is equivalent to an identity matrix. Therefore, this case is equivalent to the example above

and we can do a same reduction from MIS problem. □

A.3 Restricted Value Example
Example A.1. Consider a firm (e.g. a law firm) who wants to undertake a new project (e.g. a new

case), from three possible projects A, B, and C . The firm (principal) will get paid a fixed amount

upon completion of each project, denoted by rA, rB , and rC . However, there are project-specific
effort costs that are only observed by the employees (lawyers) who will be undertaking the project.

These costs also depend on the state, which can correspond to the statues of the available resources,

unknown to the principal. As an example, consider the following cost matrix which measures these

project-specific effort costs under three different states.

1 2 3

A 1 1 2

B 1 1 2

C 1 3 1

The first column corresponds to a situation where all projects have the same effort cost (e.g.,

when there are enough resources for all candidate projects), while in the second column, project C
becomes a challenge (e.g., due to lack of required resources), and the same for projects A and B
under last column. Instantiating the revenue from each project as rA = 2, rB = 4, and rC = 5, we

may produce the following utility matrix for the agent (lawyer), whose utility is revenue minus

effort costs (UA, at left):

UA =


1 1 0

3 3 2

4 2 4

 , UP =


2 2 2

4 4 4

5 5 5

 .
That is, taking project A under state 1 gives the agent utility 2 − 1 = 1, and the other entries of the

matrix follow similarly. We assume that the principal seeks to maximize the revenue, therefore his

utility will be the state-independent matrix shown at right, above (UP). Note that because the efforts

change the agents’s utility for the projects, the principal and agent’s incentives are misaligned

under state 2 - the principal prefers to pick project C , while the agent prefers project B due to less

effort.
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Under the state indexed j, the agent picks their most desired project д(X , j) from the set X of

available projects. For example, if X is the set of all projects, we would have:

д(X , j) =


C j = 1,

B j = 2,

C j = 3.

The principal could decide not to make all the projects available, and instead offer Y = {C}, for
example. In this case, the agent would be forced to pick project C regardless of the state, and the

principal would achieve the optimal expected utility of f (Y ) = 5. We indeed show in Section 4

that this is true in general, meaning that in the case of restricted value, it is always optimal for the

principal to pick their most preferred action ex ante, without consulting the agent.

A.4 Proof of Theorem 5.1
We give a reduction from the bounded degree vertex cover problem, i.e., the vertex cover problem

on graphs with degree at most B (constant). This problem is known to be APX-hard [7]. Consider

an instance of the bounded degree vertex cover problem G = (V, E) with ñ nodes and m̃ edges

(where m̃ ≤ B · ñ/2 = O(ñ)).8 We construct an instance of the delegation problem with m̃ + ñ states

and ñ + 1 actions, in which the distribution over states is uniform. For each node i , there is an
action ai , with an additional “default” action a0. Regarding states, there is a state se for each edge

e = {i, j}, whose value is 5 only for actions ai and aj (two ends of that edge), 2 for the default

action, and 0 for all other actions. There is also a state si for each node i , whose value is 2 only

for ai and a0 (default action), and 0 for all other actions. Moreover, the only action with non-zero

distortion is the default action with d0 = −1.

We claim that the optimal solution of the delegation problem produces a utility of (5m̃ + 3ñ −
˜k)/(m̃ + ñ) for the principal, where ˜k is the size of the smallest vertex cover of G. To see this, first

note that any solution S ⊆ V can be improved by including a0, since a0 has a negative distortion.

Any time the agent would choose a0, it is the optimal choice for the principal as well. We therefore

only consider solutions containing a0.

Now if S is a vertex cover of G with |S| = ˜k , consider the corresponding delegation set where

the principal allows actions {ai : i ∈ S} ∪ {a0}. In all the states corresponding to edges, the agent

will pick the action corresponding to one end of that edge (one is guaranteed to be in the cover

S) to get a utility of 5 compared to 2 − 1 achievable from the default action. This choice will also

generate utility of 5 for the principal, which makes 5m̃ in total. For the states si , i ∈ S the agent

will pick action ai which generates the utility of 2 for both principal and agent. This will make 2
˜k

in total. Finally, for states si , i ∈ V\S the agent picks the default action which generates a utility of

2− 1 for himself but 2+ 1 for the principal. This will give 3(ñ − ˜k) in total. Summing up the utilities

and dividing by the number of states will give (5m̃ + 3ñ − ˜k)/(m̃ + ñ).
For the converse, consider an optimal solution A to the delegation problem. We show that

the nodes corresponding to the actions in A (excluding the default action) induce a vertex cover;

otherwise the solution can be improved. Assume that there exists an edge e = {i, j} where neither ai
nor aj is allowed inA. If we add action ai toA, the principal gets a utility of 5 in state se , compared to

current utility of 3 from the default action. On the other hand, the utility of the principal decreases

in state si from 3 to 2. So the total utility ofA∪{ai } is more thanAwhich contradicts the optimality

of A. Therefore A should be a vertex cover (plus default action). This in turn implies that the utility

is at most (5m̃ + 3ñ − ˜k)/(m̃ + ñ) where ˜k is the size of the minimum vertex cover.

8
To distinguish between the parameters of the vertex cover instance and the delegation instance, we use tilde (∼) for the

graph instance.
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Since m̃ = Θ(ñ) and the minimum vertex cover has size at least m̃/B = Ω(ñ), a constant factor
gap in the bounded degree vertex cover problem translates into a constant factor gap in the optimal

solution of the delegation problem, which yields the desired APX-hardness result.

A.5 Proof of Theorem 5.3
In this appendix, we show that the logarithmic approximation factor of Algorithm 1 is tight, up

to a constant factor. That is, no threshold algorithm can perform better than (logn)/2. To prove

the tightness of our analysis in Section 5.1, we construct an infinite family of instances. Instead

of presenting value and distortion matrices, we define the utility of the principal in (13) and also

restricted distortion of each action in (14). Consequently, the agent’s utility and the value matrix

can be calculated as UA = UP + 2D and V = UP + D. For any k ≥ 2, consider an instance with

m = 2k − 1 actions (rows) and n = 2
k − 1 states (columns), with the following principal’s utility

matrix:

UP = (13)

2
k

2
k−1 + 3ϵ

2
k−1

2
k−1

2
k−2 + 4ϵ 2

k−2 + 4ϵ 2
k−2 + 4ϵ

2
k−2

2
k−2

2
k−2

2
k−2

2
k−3 + 5ϵ 2

k−3 + 5ϵ 2
k−3 + 5ϵ 2

k−3 + 5ϵ 2
k−3 + 5ϵ 2

k−3 + 5ϵ 2
k−3 + 5ϵ

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

2 +O (kϵ ) 2 +O (kϵ ) 2 +O (kϵ ) 2 +O (kϵ ) 2 +O (kϵ ) 2 +O (kϵ ) 2 +O (kϵ ) . . .

. . . ︸         ︷︷         ︸
2
k−1

2 . . . 2


Note that all the empty entries in the above matrix are zero, and are removed to make the structure

of the matrix more apparent. The optimal solution is to select set of odd actions (with size k). The
colored entries indicate (state,action) pairs that contribute to the optimal principal’s utility (OPT ).
The optimal utility is equally divided between the odd rows, leaving 2

k
for each one: the first

row has 2
k
in the first column, the third row has 2

k−1
in columns 2 and 3, the fifth row has 2

k−2

over the next 4 columns and so on. In the example, the even actions are constructed to lower the

principal’s utility whenever they are included in a threshold solution. In every state (column), we

divide the colored utility by 2 to find the utility of the next row, and keep dividing by 2 to complete

the subsequent even rows. The ϵ terms are added to break the ties and are of little importance.

Next, we define the distortion matrix. Since we are in the restricted distortion setting, it is

sufficient to determine the (state-independent) distortion of each action. We set d1 = 0, and the rest

of actions have the following distortions:

d2i+1 =

i∑
j=1

2
k−1−j , d2i = d2i+1 − ϵ, i ∈ {1, ...,k − 1}. (14)

Now that all the parameters are set, it is easy to verify that given the set of odd actions (rows), the

agent will indeed pick the colored entries. This generates the optimal utility, since it is optimal in

every single state. Assuming uniform distribution over states, the optimal expected utility is equal

to:

OPT =
k × 2

k

n
.

However, the best threshold solution in the constructed instance is to allow the entire set of actions

(Ω). To see this, assume that the principal allows actions with distortion less than or equal to d2ℓ−1

for some ℓ ≤ k . (Thresholds set at even-indexed actions can be easily shown to be suboptimal.) In
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this case, the principal will get utility of 2
k−ℓ+1 +O(ℓϵ) from the first 2

ℓ − 1 states, and zero from

the remaining states. Observe that the overall utility (2ℓ − 1) × 2
k−ℓ+1

is an increasing function in

ℓ, meaning that the best strategy for the principal is to not limit the agent. In this case, the agent

will pick the penultimate action in the first half of columns, and the last action for the second half,

generating utility of (almost) 2 for principal in every state. More precisely, we have:

APX = 2 +O(kϵ).

We get the desired lower bound by dividing the above objectives:

OPT

APX
=

k × 2
k

2n +O(nkϵ)
�

k

2

�
logn

2

.

Example A.2. In order to make sure that the above construction is clear, here we present the full

matrices for the case of k = 3, which translates intom = 5 actions and n = 7 states. The principal’s

utility in this case is:

UP =


8 0 0 0 0 0 0

4 + 3ϵ 0 0 0 0 0 0

0 4 4 0 0 0 0

2 + 4ϵ 2 + 4ϵ 2 + 4ϵ 0 0 0 0

0 0 0 2 2 2 2


Calculating the distortions in (14) results in:

D =


0 0 0 0 0 0 0

2 − ϵ 2 − ϵ 2 − ϵ 2 − ϵ 2 − ϵ 2 − ϵ 2 − ϵ
2 2 2 2 2 2 2

3 − ϵ 3 − ϵ 3 − ϵ 3 − ϵ 3 − ϵ 3 − ϵ 3 − ϵ
3 3 3 3 3 3 3


It is clear that the value matrix V = UP + D is non-negative, and the agent’s utilityUA = UP + 2D
will be:

UA =


8 0 0 0 0 0 0

8 + ϵ 4 − 2ϵ 4 − 2ϵ 4 − 2ϵ 4 − 2ϵ 4 − 2ϵ 4 − 2ϵ
4 8 8 4 4 4 4

8 + 2ϵ 8 + 2ϵ 8 + 2ϵ 6 − 2ϵ 6 − 2ϵ 6 − 2ϵ 6 − 2ϵ
6 6 6 8 8 8 8


Observe that OPT = 24/7 by the set of odd actions {1, 3, 5}, while APX = (14 + 12ϵ)/7 from the

entire set of actions Ω = {1, 2, 3, 4, 5}.

A.6 Proof of Theorem 6.1
The algorithm is similar to Algorithm 1: try every threshold policy, and adopt the best. We show

that this results in an approximation ratio of 2 − pmin.

Proof. Let OPT be an optimal solution, and define ai to be the index of action chosen by the

agent, in the state i , given that he is allowed the actions in OPT . Let d be the maximum distortion

inOPT . Without loss of generality, we can assume that the corresponding action is taken in at least

one state, otherwise we can remove it without changing the optimal utility. Therefore we can write,

d = max

i ∈OPT
di = max

i ∈S
dai .
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LetAPX be the subset of actions within distortion range of [d,d], where d is the lowest distortion

in Ω. Although we do not know d , the algorithm is guaranteed to find APX at some iteration. Let

bi be the index of action taken in state i , given that the agent is allowed to pick actions in APX .

We show that if the agent picks a lower distortion compared to the optimal solution (i.e.,dbi ≤ dai )
while the action ai is allowed, the principal is guaranteed to get a utility as big as the optimal

solution in that particular state i . On the other hand, if the agent picks a higher distortion, we show

that the principal loses at most twice the distortion difference (i.e., 2(dbi − dai )). To show this, note

that we have:

vbi ,i + dbi ≥ vai ,i + dai , (15)

because ai ∈ APX (by choice ofd), but the agent decided to pickbi . This inequality can be re-written
as

vbi ,i − dbi ≥ vai ,i − dai − 2(dbi − dai ),

which justifies both cases mentioned above. Multiplying by corresponding probabilities and sum-

ming up over all states, we can form the utility of the principal in both optimal and approximate

solutions: ∑
i ∈S

pi (vbi ,i − dbi ) ≥
∑
i ∈S

pi (vai ,i − dai ) − 2

∑
i ∈S

pi (dbi − dai ).

Therefore,

APX ≥ OPT − 2

∑
i ∈S

pi (dbi − dai ), (16)

where we abused notation to write OPT instead of f (OPT ) (same for APX ).

Next, we have to bound the distortion differences. By non-positivity of distortion, any term

dbi − dai is at most |d |. Moreover, dbi − dai is non-positive for at least one of the states. This is

because dbi ≤ d (for all i ∈ S), and d = dai′ for one particular state i
′
. In conclusion,∑

i ∈S

pi (dbi − dai ) ≤ |d |
∑
i,i′

pi ≤ |d |(1 − pmin).

Using this bound in (16), we get

APX ≥ OPT − 2(1 − pmin)|d |. (17)

In parallel, consider the singleton solution of lowest distortion. In that case, the agent is forced to

pick that low-distortion action in every single state. By non-negativity of (agent) utilities, the value

of that action is at least |d | in every state, generating the minimum utility of 2|d | for the principal.
If we denote this singleton solution by APX ′, we have

APX ′ ≥ 2|d |. (18)

The final step is to take a weighted average of (17) and (18), as the better of the two will be better

than the average. We multiply the inequalities by
1

2−pmin

and
1−pmin

2−pmin

, respectively, and add them

together.

max {APX ,APX ′} ≥

(
1

2 − pmin

)
APX +

(
1 − pmin

2 − pmin

)
APX ′ ≥

OPT

2 − pmin

.

□
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A.7 A Matching Lower Bound for Theorem 6.1
Here we show that the (2 − pmin)-approximation factor of Theorem 6.1 is tight. In fact, no thresh-

olding algorithm can perform better than (2 − pmin), where by thresholding algorithm we mean

any algorithm that outputs actions within a continuous range of distortion. In other words, the

thresholding algorithm is not allowed to have gaps between actions: if two actions are chosen, any

other action with a middle distortion should be included.

Example A.3. Consider an example withm = 3 actions and n ≥ 2 (uniform) states. The value

matrix is given by

V =


(2 − ϵ)n 0 0 . . . 0

ϵ 3ϵ 3ϵ . . . 3ϵ
1 ︸                           ︷︷                           ︸

n − 1

1 + ϵ 1 + ϵ . . . 1 + ϵ

 ,
and the restricted distortions are (d1,d2,d3) = (0,−ϵ,−1). It is straightforward to see that the

optimal set of actions is OPT = {1, 3} with objective value

f (OPT ) =
1

n
[(2 − ϵ)n + (2 + ϵ)(n − 1)] =

4n − 2 − ϵ

n
.

On the other hand, Algorithms 1 will return Ω = {1, 2, 3} with objective value

f (Ω) =
1

n
[(2 − ϵ)n + 4ϵ(n − 1)] =

(2 + 3ϵ)n − 4ϵ

n
.

As ϵ goes to zero, we get our desired lower bound for the approximation ratio, which matches the

result of Theorem 6.1.

lim

ϵ→0

f (OPT )

f (Ω)
=

4n − 2

2n
= 2 −

1

n
.
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